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ABSTRACT

This is a final report for research in distributed computer systems.

Chapter 2 describes top-down development approach. The development

process is divided into four successive phases: (i) requirement and specification

phase; (ii) design phase; (iii) implementation phase; (iv) evaluation and validation

phase. Guidelines and automated tools for the first two phases are developed. A

graphical method (using the max. flow min. cut algorithm and the cut-tree

concept) to decompose and partition a computer system into loosely coupled

subsystems is proposed. The implementation and the evaluation and validation

phases are outlined briefly only because they are very technology and architecture

dependent.

Chapter 3 examines Petri net model for asynchronous concurrent systems.

Procedures based on Petri net for predicting and verifying the system performance

are presented. The computational complexities of these procedures are also shown.

Chapter 4 examines the analysis techniques for deadlocks in asynchronous

concurrent systems. In particular, we study in detail deadlocks caused by conflicts

il oulAi exclL-ive acces ,, ",-.cs'u. cc, 'with tl,; conitra'nt h t z c', resot:r-.. L/)

has only one member.

Chapter 5 first classifies and then evaluates several existing software

reliability models according to some proposed criteria. Then it develops a theory

of software reliability based on the nature of the input domain of the program, i.e.,

the size of the errors and the number, complexity and continuity of equivalence

classes formed in the input domain.
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CHAPTER ONE.

Introduction

In the past year, we have studied the distributed computer system. The

work that we have accomplished can be summarized as follows:

(1) Top down design strategy.

(2) Modelling and performance analysis of asynchronous concurrent systems.

(3) Methods to detect deadlock in distributed systems.

(4) To develop an theory of software reliability based on the nature of the

input domain of the program.

Current approaches to the design and analysis of computer systems are

based primarily on experience and intuition. The specification, design,

implementation and evaluation of computer systems are very expensive, difficult

to tcst adequately, slow to deploy and difficult to adapt to changing requirements.

T"i_:se difficulties have led to many schedule slippages and project failures.

This research attempts to develop a systematic approach for the design

and analysis of computer systems. However, the activities involved are so wide

and varied that only part of the full scope of the design and development process is

studied. A top-down deveiovnmeri approach icr Cui puttr sys*Xrns is dvelop.

The techniques for prediction and verification of the performance of

asynchronous concurrent systems can be classified into two categories: (1)

deterministic models, and (2) probalistic models. In deterministic models, it is

usually assumed that the task arrival times, the task execution times, and the

synchronization involved are known in advance to the analysis. With this

information, a very precise prediction of the system performance can be obtained.

This approach is very useful for performance evaluation of real time control

systems with hard deadline requirements.

-2-



In probabilistic models, the task arrival rates and the task service times

are usually specified by probabilistic distribution functions. The synchronization

among tasks is usually not modelled, because otherwise the number of system

states becomes so large that it would be impossible to perform any analyses.

Probabilistic models usually give a gross prediction on the performance of the

system and are good for early stages of system design when the system

characteristics are not well understood. In this paper, we focus on performance

analysis of real time systems and therefore we have chosen the deterministic

approach. In particular, in order to model clearly the synchronization involved in

concurrent systems, the Petri net model is chosen.

In our approach, the system to be studied is first modelled by a Petri net.

Eascd on the Petri net model, a given system is classified as either: (1) a

consistent system; or (2) an inconsistent system (the definitions are given in later

sections of the paper). Most real-world systems fall into the first class and so we

focus our discussion on consistent systems. Due to the difference in complexity

involved in the p:!rforrnance analyses of different types of consistent systems, the.y

z-re further subclassified into: (i) decision-free systems; (ii) safe persistent

--ytcmJ; ,,: G.) gc:ierz' s strr . Proc 2dur .s *or pt edL:ting ar., veri.yir.- tIe

system performance of all three types are presented. It is found that the

computational complexity involved increases in the same order as they are listed

a Love.

Our work in system deadlocks concentrates on analysis techniques for

deadlocks in asynchronous concurrent systems. This includes multi-programrmed

systems, multiple processor systcms and computer networks. In particular, we

studyin detail deadlocks caused by conflicts in mutual exclusive accesses to

resources with the constraint that each resource type has only one member.

Deadlocks due to the erroneous nesting of binary semaphores (Dij 71), nesting of

.3-
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critical regions (Bri 72,Bri 73a) and nesting of monitors (Bri 73b, Iloa 74) are

important members in the above category. In addition to these, deadJocks due to

conflicts in data file lockings in distributed database systems also fall into the

above category.

In order to facilitate the use of digital computers in critical, real-time

control systems (e.g., nuclear power plant safety control systems), the software

Must be thoroughly validated. Software reliability is a measure of the confidence

in the operational correctness of the software. Since the early 70's several

software reliability models have been proposed. However, most of these models

are ad hoc extensions of hardware reliability models and their assumptions have not

been validated.

This thesis first classifies and then evaluates several existing software

reliability models according to some proposed criteria. Then it develops a theory

of software reliability based on the nature of the input domain of the program, i.e.,

the size of the errors and the number, complexity and continuity of equivalence

classes formed in the input domain.

A general framework is developed for software reliability growth models

uscd during the debugging phase of software development. It incorporates the

concepts of residual error size and the testing process used. Two specific models

are then developed. The first approach models the effect of debugging actions on

the residual error size as a random valk process with a continuous state-space.

The time beween the detection (and correction) of successive errors is then

modelled as a doubly stochastic Poisson process. The application of this model and

its statistical evaluation are also discussed. The second approach is a bayesian one

dealing with the prior and posterior distributions of the residual error size.

During the validation phase, the program is tested extensively in order to

determine its reliability. Even if new errors are detected, they are not corrected.

-4-



A model is developed for directly estimating the correctness probability of the

software based on the set of test cases used and on the number of equivalence

17lasses, their complexity and continuity properties. The model is applied to a pilot

,2rogramn developed for nuclear power plant safety control systems.

A predictive model, applicable during the operational phase, is developed

based on the continuity of the input domain. Anuncertainty measure using fuzzy

set theory is proposed for the operational software. The perturbation of the

residual error size due to different maintenance activities is also discussed.

The theory is then applied to the evaluation of software validation

techniques and programming languages. Some ]anguage constructs and

documcntaton techniques which can improve the reliability of the software are

p-roposcd. The application of the theory to different aspects of project

mnanngement is also discusrcd.

This report is divided into 6 chapters. The top down design strateogy is

prnsentcd in chapter 2. Chapter 3 presents the techniques for performance

evalua.tion in concurrent systems. Chapter 4 develops the procedure of deadlock

'e~cc~oi i I Jistrihuted systems. Chapter 5 prescnts the developmcnt of a theory

of Soft'vare Reliability model based on the nature of the input domain of the

Program. Lastly, section 6 gives a conclusion of this report.

&[,
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CHAPTER 2

A Top-Down Approach for the Development
of Distributed Computer Systems

2.1 Introduction

In this chapter, a systematic approach for the development of distributed

computer systems is discussed. The objective is to develop guidelines and

automated tools for the design of distributed systems. The philosophy behind the

approach is based on top-down hierarchical modelling of DCS.

2.2 The Top-Down Development Approach

The top-down approach proposed here can be broken down into four

successive phases (Figure 2.1):

(1) Requirement and specification phase.

(2) Design phase.

(3) Implementation phase.

(4) Evaluation and validation phase.

The requirement and specification phase starts with some (possibly

incomplete, vague, and informal) system requirements that approximate the

csircd sys~en-,, and finish-..s wLcn -h- mjoiiieo a,,J clabo:ated r.cqutrumc.;s hay:

been formally encoded and tested to the satisfaction of the system engineers and

the "customers".

The design phase starts with the requirement specifications and finishes

when the system specifications are produced. The objective is to optimize and

organize the system in a well formed structure. It involves an hierarchy of

decomposition and partitioning of the system into subsystems.

The implementation phase takes the system specification and develops the

system architecture. It then maps the system functions into either hardware or

-6-
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software functions. It is only at this step that physical constraints and technology

comes into consideration.

The final step is the evaluation and validation of the system. This phase

uses the bottcn up validation approach. It takes the final design and ensures that

the system meets the original requirements. This step uses both analytical

modelling and simulation.

2.2.1 Requirement and Specification Phase

This phase consists of four major steps (Figure 2.2): (i) requirement

elaboration, (ii) requirement specification and attribute formulation, (iii) process

definition, and (iv) verification of requirements.

2.2.1.1 Requirement Elaboration

The requiremment elaboration step can be considered as a problem

understanding stage. The objective is to let the requirement engineers to have a

bird's-eye view on the operations of the system.

2.2.1.2 Requirement Specification and Attribute Formulation

(A) R cui:ericnt 5pecifi-aton

In real-world situations, the problems are so complex that pure

mathematical formulation is usually impossible. The approach of using a

specification language is chosen.

A specification language is a syntactically and semantically well defined

language possibly intermixed with mathematic equations. Its vhole purpose is to

provide a efficient and effective medium for defining the system requirements.

The language should be amenable to both static (hierarchical relationship, data

definition, etc.) and dynamic (control flov and data flow) analyses (Bel 76,Hlam 76,

Pet 77).

-7-
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(B) Attribute Formulation

For a distributed system, the attributes are cost, reliability, availability,

flexibility, expandability, reconfigurability, etc. Some of them are very difficult

to be quantified. Usually, the situation is further complicated by the fact that the

system attributes are interdependent on each other and they may compete and

interact with each other. The designers are forced to consider design tradeoffs

early in the development process.

2.2.1.3 Process Definition

The process definition step accepts inputs from the requirement

specification and attribute formulation step and identifies major functions to be

performed. First the input stimulus and the required responses are characterized.

2.2.1.4 Verifiction of Rcquirements

In this step, the processes of the virtual system is verified to meet the

original users' requirements. As the system is developed hierarchically, the

specifications of one level are the requirements of the next level. To verify the

correctness of the virtual system, we only have to verify the consistency between

the specifications and requirements betveen consecutive levels.

2.2.2 Design Phase

The design phase starts with the defined processes which are the output of

the requirement and specification phase. The major steps involved in the design

phase are decomposition and partitioning, functional specification and finally

veritication (Figure 23).

2.2.2.1 Decomposition and Partitio ing

In order for the design process to be manageable, it must be decomposed

and partitioned in such a way that most decisions can be made locally, based on
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data available within a local area of the developing system specifications. To

achieve this, the system is decomposed into progressively more detailed

components which are then grouped into partitions (subsystems) to minimize the

amount of interactions between partitions. A graph theoretical approach for the

systematic decomposition and partitioning of a system is developed.

2.2.2.2 Functional Specification

The next major step in the design phase is functional specification of the

partitioned processes. This functional specification is different from the process

specification described in the reuirement specificaton phase. The objective of the

process specification is to define the interactions of the processes for the

decomposition step. The objective of the functional specification here is to define

the characteristics of the functions so to enable optimization in the functions to

processors mapping.

2.2.2.3 Verification of Design

No single model is powerful enough to have all the above features. The

control flow of a distributed system can be modelled quite effectively by Petri net,

UCLA graplh rodel, E-net, eic. (Wet 71, Gos i, Nce 73). "Yz-2 iodels ;eAr,::,cnt

clearly the flow of information and control in a distributed system, especially those

which exhibit asynchronous and concurrent properties.

In order to predict and analyze the performance of the designed system,

queuing models and simulation are often used ('er 78).

2.2.3 Implementation, Evaluation and Validation

The implementation phase takes the virtual system and develops the

system architecture. It then maps the system functions into either hardware or

software functions.
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The final phase is the evaluation and validation of the system. This phase

ises the bottom up validation approach. Both analytical modelling and simulation

will be used. Because of the hierarchical decompositon, each subsystem to be

inalyzed should be small and therefore complexity should be low.

Y.3 Summary

The development process is divided into four successive phases: (i)

t.cquirement and specification phase; (ii) design phase; (iii) implementation phase;

and (iv) evaluation and validation phase. The first two phases are explored in

detail. The last two phases of the development process are only outlined briefly

,ecause they are very technology and architecture dependent.

- 10-
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CHAPTER 3

Performance Evaluation of Asynchronous Concurrent System

3.1 Review of Petri Nets

3.1.1 Basic Properties of Petri Nets

Petri nets (PET 77, AGE 75) are a formal graph model for modelling the

flow of information and control in systems, especially those which exhibit

asynchronous and concurrent properties.

3.1.2 Application of Petri Nets in Control Flow Analysis

Petri nets have been used extensively to study the control flow of

computer systems. By analyzing the liveness, boundedness and proper termination

properties of the Petri net model of a computer system, many desirable properties

off th system can be unveiled.

A Petri net is live (HAC 75, IIOL 71) if there always exists a firing

sequence to fire each transition in the net. By proving that the Petri net is live,

the system is guaranteed to be deadlock free.

A Petri net is bounded (NAR 66, LIE 76) if for each place in the net, there

exists an upper bound to the number of tokens that can be there simultaneously. If

tokens are used to represent intermediate results generated in a system, by proving

that the Petri net model of the system is bounded, the amoun1t of buffer space

required between asynchronous processes can be determined and therefore

information loss due to buffer overflow can be avoided. If the upper bound on the

number of tokens at each place is one, then the Petri net is ssatfe. Proramilling

constructs like critical regions (BRI 72) and monitors (BRI 73, 1 IOA 74) can be

modelled by safe Petri nets.

A Petri net is plop,1rly ternir iatirv' (GOS 71, POS 74) if the Petri net

always terminate in a well--defined manner such that no tokens are left if] the net.

- II -
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By verifying that the Petri net is propcrl) tcrniinated, the systcm is guaranteed to

function in a well behaved manner without any side-effects on the next initiation.

3.1.3 E'xtended Timed Petri Nets

In order to study the performance of a system, the Petri net model is

extended to include the notion of time (RAM 74). In such extended nets, an

execution time, r, is associated with each transition. When a transition initiates its

nxecution it takes r units of time to complete its execution. With the extended

'etri net model the performance of a computer system can be studied.

3.2 Pcrfornmance Evaluation

The work that we have accomplished in performance evaluation is to use

Petri n.ts to find the maximum performance of the system, i.e., to find the

ShininuT cycle tirno (for processing a task) of the system. As pointed out before,

different computational complexities are involved in the analyses of systems of

different types. The approaches for analyzing each typc of system are studied

separately in detail in the following section. Before we come to the analyses, some

definitions are in order.

D efinition. In a Petri net, a secquence of places and transitions, PL)Lt2...Pn, is a

directed path from P1 to Pn if transition ti is both an output transition of place Pi

and an input transition of place Pi+I for I i ri-I.

Definiticn. In a Petri net, a sequence of places and transitions, Plt lP2t2...Pn, is a

directed circuit if PitlP2t2...Pri is a directed path from P1 arid Pn and P equals

Definition. A Petri net is strong connected if every pair of places is contained

in a directed circuit.

12-
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In this paper, we presented the performance analysis techniques for

strongly connected non-terminating Petri nets. Extensions to analyze weakly

connected Petri nets are quite straightforward so it will not be discussed in this

report.

3.2.1 Consistent and Inconsistent Systems

The first step involved in our approach to analyze the performance of a

system is to model it by a Petri net. A system is a consistent (inconsistent) system

if its Petri net model is consistent (inconsistent). A Petri net is consistent

(condition A) if and only if there exists a non-zero integer assignment to its

transition such that at every place, the sum of integers assigned to its input

transitions equals the sum of integers assigned to its output transitions; otherwise,

the system is inconsistent. If a system is live and consistent, the system goes back

to its initial coniiguration (state) after each cycle and then repeats itself. If a

system is inconsistent, either it produces an infinite number of tokens (i.e., it needs

infinite resources) or consumes tokens and eventually comes to a stop.

3.2.2 Decision-free Svstems

A bysti.n is a cecLzion,- fr- c sys'n if it, l'etri r et r) c'el i3 I

decision-free Petri net. A Petri net is decision-free if and only if for each place in

the nct, there is one input arc and one output arc. This means that tokens at a

given place are generated by a predefined transition (its only input transition) and

consurned by a predefined transition (its only output transition)

For a decision-free system, the maximum performance can be computed

quite easily.

Theorem 3.1. For a decision-free Petri net, the number of tokens in a circuit

remains the same after any firing sequence.

-13-



Definition. Let Si(ni) be the time at which transition t i initiates its ni-th

execution. The cycle time, Ci, of transition t i is defined as

Lim S i (n i ) I n •
n. ->-'a-

Theorem 3.2. All transitions in a decision-free Petri net have the same cycle

time.

Theorem 3.3. For a decision-free Petri net, the rininum cycle tine (maximum

performance) C is given by

Pl: ax : k = 1,2,...,q

such that S.(n i ) a i + Cn.

T - r. su of the exccution times of the
t. Lk  transitions in circuit k

3.k

" i total nu.,ber of tokens in the places
P iL V in circuit k

q number of circuits in the net

ai = constant associated with transition t i

Lk loop (circuit) k

Mi -number of tokens in place Pi

We develop a very fast procedure to verify the performance of a system.

Arocedure for verifyig syste performance

(I) Express the token loading in an nxn matrix, P, where n is the number of

places in the Petri net model of the system. Untry (A,13) it) the matrix

-14 -



equals x if there are tokens in place A, and place A is connected directly

to place B by a transition. Matrix P of the example system in Fig 3.1 is

shown below:

A C D E F G

B L i LQ.L! i A9L i i

C LLL0_Q_0__0 1-LO_LQi

0 0 'a t0 0 '
FLO lo 0L 0_9__QI
C i0 0 Q " 0 "0 0O ~0

Matrix P

(2) Express transition time in an nxn matrix, Q. Entry (A,B) in the matrix

equals to r i (execution time of transition i) if A is an input place of

transition i and B3 is one of its output places. Entry (A,B) contains the

symbol "w" if A and B are not connected directly as described above.

Matrix Q for the example system is:

A B C D E F C

B" '"4l -- j i '- ! V 9--

C 20

1 3 S
G, 2: !1 w i * , 5 , w "

r atri-x

-15-
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(3) Compute matrix CP-Q (with n-2 oo for n N), thenuse Floyd's algorithm

(Flo 62) to compute the shortest distance between every pair of nodes

using matrix CP-Q as the distance matrix. The result is stored in matrix

S. There are three cases:

(a) All diagonal entries of matrix S are positive (i.e., CNk -Tk 0 for all

circuits) -- the system performance is higher than the given

requirement.

(b) Some diagonal entries of matrix S are zero's and the rest are positive

(i.e., CNK -Tk -0 for some circuits and CNk -Tk 0 for the other

circuits) -- the system performance just meets the given

requirement.

(c) Some diagonal entries of matrix S are negative (i.e., CNk - l k 0 for

some circuits) -- the system performance is lower than the given

requirement.

In the example, for C -- 15, CP-Q is

A r r C D g F C

I"-- 00
,'C C 9 I "W* n o , r.,-j n"9

S I - C-I CO I Cc,
I .0 I C- I C, CO O '

c, . co oo -o_

S n _ 30

After applying Floyd's algorithm to find the shortest distance between every pair

of places we have; A P C D E F G

C L_ - ..... xL__._.  , I .. I ..... I-_

c L-or8 ' i t I .7r I .'. I 'O I6 2

D) 1 9 1 --7 I I

1 -5

- -T- ------- ---3-- -
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Since the diagonal entries are non-negative, the performance

requirernment of C 15 is satisfied. Moreover, since entries (A,A) (C,C), (E,E) and

(G,G) are zero's, C 15 is optimal (i.e., it is the minimum cycle time). In addition,

when a decision-free system runs at its highest speed, CNk equals to Tk for the

Lottleneck circuit. This implies that the places that are in the bottleneck circuit

rill have zero diagonal entries in matrix S. In the example, the bottleneck circuit

is AtiCt2Et4 GtS. With this information, the system performance can be improved

by either reducing the execution times of some transitions in circuit (by using

faster facilities) or by introducing more concurrency in the circuit (by introducing

more tokens in the circuit). Which approach should be taken is application

dependent and beyond the scope of this thesis.

The above procedure can be executed quite fast. The formulation of

matrices P and Q takes 0(n 2 ) steps. The Floyd algorithm takes 0(n 3) steps. As a

whole, the procedure can be executed in 0(n 3) steps. Therefore, the performance

requirement of a decision-free system can be verified quite efficiently.

3.2.3 Safe Pesistent Systems

A system is a safe persistent system if its Petri net model is a safe

persistent Petri net. A Petri net is a safe persistent Petri net if and only if it is a

safe petri net and for all reachable markings, a transition is disabled only by firing

the transition. To compute the performance of the system, we first transform it

into a decision-free system and then use the algorithm discussed in the previous

subsection to compute the system performance.

A persistent Petri net can be transformed into a decision--free Petri net

by tracing the execution of the system for one cycle.

3.2.4 Gcneral Systems

A system is a general system if its Petri net model is a general Petri net.

- 18-
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A Petri net is a general Petri net if it is a consistent Petri net and there exists a

reachable marking such that the firing of a transition disables some other

transitions.

General systems are very difficult to analyze. In the next theorem, we

show that it is unlikely that a fast algorithm exists to verify the perfo*nance of a

general system. A method of computing the upper and lower bounds of the

performance of a conservative general system (Lie 76) is proposed. For a

non-conservative general system, no good heuristics are known to the authors and

further research is needed.

Theorem 3.4. Verifying the performance of a general Petri net is an NP-cornplete

problem (Kar 72).

- 19-
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CHIAPTERt 4

System Deadlock

4.1 An Approach to Deadlock Prevention

The scope of our study on system deadlock is restricted to systems using:

(i) binary semaphores; (ii) critical regions; and (iii) monitors as their interprocess

synchronization mechanisms. This enforces structural design and greatly reduces

the computational complexities involved in the analyses. Based on the above

synchronization constructs, a formal graph model (the request-possession graph) is

devloped to model deadlocks in these systems. The necessary and sufficient

conditions for the occurrence of a deadlock are derived. Based on these conditions,

techniques for uncovering potential deadlocks in a system are developed, and a

s.ystematic approach for the construction of deadlock-free systems using critical

regions and/or monitors is proposed.

!,.t.1 The Request-Possession Graph Model

An request-possession graph (an RP-graph) is a formal graph mjodel

developed to study deadlocks in systems which use binary semaphores, critical

gi ns ar dj-Tr c'dio-S as thi r sy chrcn;at.c r iec - nis i.;. It is i dir ectd

bipartite graph with two types of nodes and two types of arcs (Fig. 4.1b): (1)

resource reference nodes (which are called reference nod!,s in short in the rest of

the chapter), and (2) resource nodes. The reference nodes are used to represent

.cresses of resources in a system and the resource nodes are used to represent

re:ources. A dotted arc directed from a reference node to a resource node

rej)[esents the request Of the resource from the reference node. A solid arc

directed from a resource to a reference node represents the assignment of the

re ource to the reference node.
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The RP-graph of a program can be generated by scanning through the

program once. The procedure for constructing the RP-graph of a concurrent

sytem can be best illustrated by an example. Figure 4.1 shows a concurrent

.Vstem together with its RP-graph. For each binary seamphore (P or V operation)

in the system, there is a corresponding resource node (reference node) in the

RP-graph. For each P operation in the system, a dotted arc is drawn from the

,corresponding reference node to the corresponding resource node. Solid arcs are

then drawn from the resource nodes to a reference node for the resources that

hCAvc been possessed by the process when it begins to execute the reference node.

For example, solid arcs are drawn from resource nodes a and b to reference node

'(b) or process X because both resources a and b are possessed by the process when

ii begins to execute instruction V(b). Following the above procedure, the RP-graph

cf a system can be constructed in linear time to the number of instructions in a

pr,ra;n. As the releases of resources will never bring a system into a deadlock,

the reference nodes corresponding to V operations are omittd in RP-graphs.

4.1.2 The Necessary and Sufficient Conditions for Dead!ocks

The nece.sary co.!-dtier fcr deadloct:s developed in this sectinn is

applicable to systems using binary semaphores, critical regions and/or monitors as

their synchronization mechanisms. The sufficient condition for deadlocks

developed is only applicable to systems using critical regions and/or monitors as

their synchronization mechanisms. This is due to the unstructureness of

senaphores and are explained later in this section.

.efinition. A system is safe if and only if it is deadlock-free. A system is unsafe

if and only if it potentially can get into a deadlock state.

Threorem 4.1. Only gives the necessary condition for an unsafe system. The

cxistencc of a directed cycle in the RP-graph of a system does not imply that the
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system is unsafe.

The RP-graph can be generated automatically in linear time to the

number of instructions in a system. The Floyd algorithm can be used to detect the

existence of directed cycle in the RP-graph, which has execution time 0(n 3 ) steps

where n is the number of nodes in the generated RP-graph. As a rsult, the

proposed algorithm can be executed in poly-nominal time to the number of

instructions in a systm.

Before we discuss the sufficient condition for a safe system, some

extensions have to be made on the RP-graph. The resultant model is called the

augmented request-possession- graph (the ARP-graph). It is very similar to the

RP-graph except that each reference node, r, is given a set of names, sr, such that

S" Sr if and only if:

(1) s is the name of the process when it begins to execute note r, or,

(2) s is the name of a resource that has been possessed by the process when it

begins to execute node r (i.e., there exists a solid directed arc from

resource so to node r in the RP-graph).

'r~ao, ei. .2. /\ systemni si,,c if a-.d oily f 'ts ARP-graph r-czs ro' contein a

directed cycle with distinct names on its reference nodes (i.e., Su1 'Sv for all

pairs of nodes, u and v, in the cycle).

Theorem 4.2. Is true for a system which uses critical regions and monitors as its

synchronization mechanisms, however, it does not hold for a system that uses

semaphores as its synchronizaton mechanism. From this point onwards, %,.hen we

talk about systems, we mean systems which suse critical regions and/or monitors as

their synchronization mechanisms.

One application of theoroem .2 is to prove the safety of a system.

Before we use the Theorem, we have to develop an effective procedure to
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detcrmine whether there exists a directed cycle with distinct labels on its nodes in

a labelled directed graph. -lowever, it is shown in the following theorem that the

above problem is NP-complete (i.e., it is unlikely to have a fast algorithm to solve

Ihe problem).

Theorcm 4.3. It is NP-complete to find a directed cycle with distinct labels on its

aodes in a labelled directed graph.

4.1.3 An Approach to the Design of Deadlock-Free System

..heo.em 4.4

If all critical regions and/or monitiors are linearly ordered, and all

processes enter a critical region or a monitor at a higher level before those at a

.ower level, deadlock cannot occur.

The above strategy imposes severe constraints on the nesting of critical

regions and/or monitors. Two of its drawbacks are: (1) reducing the concurrency

in a system; and (2) reducing the transparency of a system. One approach to

Lceriedy some of the drawbacks is to group critical regions and/or monitors into sets

allowing unordered netirig within each set. A linear ordering is then imposed

anon, sets. A process must not enter a critical Legion or a trionitor in a set at a

hihcr level after it has entered one in a set at a lower level. The linear ordering

anong sets guarantees that deadlock cannot occur due to improper nesting of

critical regions or monitors in different sets. The deadlock-free condition within

each set is verified by the deadlock detection procedure discussed in section 4.1.1.

This approach provides: (I) good programming style; (2) higher degree of

concurrency; (3) no run time overhead; and (4) automatic deadlock detection during

cormplation.

-:.2 Deadlock Detection i, Distributed Data B ases

In a distributed data base, deadlocks carn be detected quite easily by using
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a centralized control strategy. Whenever a process locks or releases a data file, it

gets the permission from a central control node. This control node maintains a

demand graph for the whole system and checks for deadlocks by searching for a

directed cycle in the graph. However, the approach is inefficient. All data

accesses have to get the permissions from the central control node although they

may not cause any deadlocks. This slows down the system, wastes the system

communication bandwidth and unnecessarily congests the cornmunication

subsystem. Above all, if the control node goes down, it is very difficult to recover

the system from the failure.

Another approach for deadlock detection is to store the resource status

locally at each site. Periodically, a node is chosen to be the control node.

Resource status are then sent from each site to the control node for analyses. This

remedies most of the drawbacks of the ccntralized approach. However, due to the

inherent communication delay, the chosen control node may get an inconsistent

view of the system, and it may make a wrong conclusion.

We have developed three approaches to construct consistent demand

graph. In the approaches, it is assumed that each transaction is given a unique

4.2.1 A lwo Phase D-eadlock Detection Protocol

In this protocol, each site maintains a status table for all resources that

are owned by the site. For each resource, the table keeps track of the transaciton

that has locked the resource (if one exists) and the transactions which arc waiting

for the resource (if they exist). Periodically, a niode is choscn as the control. The

chosen control node performs the following operations:

(I) Broadcasts a message to all no(es in the system requesting them to send

their status tables and waits until all tables have been received.

(2) Constructs a demand graph for the system:
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(a) If there is no directed cycle, the system is not in a deadlock and the

node releases its control.

(b) If there is a directed cycle, the node continues its execution.

(.i) Broadcasts a second message to all nodes in the system requesting them

to send their status tables and waits until all tables have been received.

(4) Constructs a demand graph for the system using only transactions that are

reported in both the first and second reports:

(a) If there is no direct cycle, the system is not in adeadlock and the

node releases its control.

(b) If there is a directed cycle, the systrn is in a deadlock. The node

reports the deadlock situation to a deadlock resolver.

The above procedure suses a two phase commit protocol. By only using

transactions that are reported in both the first and the second status reports

inconstructing the demand graph, a consistent system stat is obtained. The main

advantage of this protocol is its simplicity. The drawback is the requirement of

two status reports from each site before a deadlock can be determined. In general,

the protocol is good for systems in which deadlocks occur only inftrequently.

4.2.2 A One Phase Deadlock Detection Protocol

In this protocol, a deadlock is detected in one communication phase. Each

site maintains a resource status tat, ior all local resources and a process status

table for all local processes. The resource status table keeps track of the

t~ansactions that have locked a local resource and the trnsactions which are

vaiting for a local resource. The process status table keeps track of the

-rensactions that are being owned by processes local to the site. The system

op-erates according to the following rules:

(A) A process at site S requests a resource -- a transaction (S,t) is created,

- where S is the site name and t is the time at which the transaction is
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initiated. An entry (Stpw) is put into the process status table of the site

indicating the transaction (S,t) is waiting for a resource. A message is

sent to acquire the resource.

(B) Site T receives a message that transaction (S,t) requests a resource local

to T:

(i) If the resource is free, the resource is assigned to the transactin and

a lock is set on the resource. An entry (St,a) is created in the

resource status table of the site and a message is sent to notify the

requesting process of the assignment.

(ii) If the resource is being locked, an entry (S,t,w) is created in the

resource status table of the site and a message is sent to

acknowledge the receiver of the request.

(C) Site S receives a resource assignment message for transaction (S,t) -- the

entry (St,%v) in the process status table is changed to (Sta).

(D3) Site S receives a request acknowledgement message for transaction (S,t)

-- do nothing.

(E) A process at site S releases a resource corresponding to transaction (S,t)

.- th -city (S:ta) 's -- rncved 'rni tlei, process sto tii- t nlc Zlrid a

message is sent to notify the releae.

(F) Site T receives a resource message corresponding to transaction (S,t) --

the resource is unlocked and the entry (Sta) is removed from the

resource status table.

Periodically, a node is chosen as the control. The chosen control node

performs the following operations:

(I) Broadcasts a message to all nodes in the system requesting them to send

their status tables and waits until all tables have been received.

- 26-



(2) Constructs a demand graph for the systern using only transactions for

which the resource status table agrees with the process status table (i.e.,

identical entries exist in both the resource status table and the process

status table).

(a) If there is no directed cycle, system is not in a deadlock and the node

releases its control.

(b) If there is a directed cycle, system is in a deadlock. The node reports

the deadlock situation to the deadlock resolver.

In order to show that the above protocol is correct, we have to prove that

t he existence of a directed cycle in the constructed demand graph implies the

,)ccurrence of a deadlock state.

"heore-n 4.5

A system is in a deadlock if and only if there is a directed cycle in the

dcnand graph constructed by the above procedure .

';.2.3 A Hierarchical Deadlock Detection Protocol

In very large distributed data bases, it may be very costly to transfer all

status tables to one site. In parcicular, if the access pattern is very localized, it

will be of great advantage if deadlocks are detected locally. In these systerns, one

-.pproach is to group sites which arc close to each other into a cluster.

Pcriodically, a node in a cluster is chosen to be the control. This control node

executes the one phase deadlock detection protocol and constructs a demand graph

or the cluster. The result obtained by the control node together with the

S:.i'ercluster accesses (which should be relatively few) arc then sent to a central

:c,,.trol node (which is also chosen dynamically). Based on this information, the

,.entral control node constructs the demand graph of the whole system. In this
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way, deadlocks within a cluster are detected by the control node of the cluster and

deadlocks among clusters are detected by the centrl control node.

Definition

A transaction is a local (intercluster) transaction if and only if the

requesting process and the requested resource are in the same (different) cluster(s).

A Hierarchical Deadlock Detection Protocol

(A) Periodically, a central control node is chosen. This node performs the

following operations:

(1) Chooses dynamically a control node for each cluster.

(2) Broadcasts a message to all control nodes requesting them to send

their status information and wait-for relations of the intercluster

transactions.

(3) Constructs a demand graph of the system using both the intercluster

transactions for which the resource status report agrees with the

process status report and the wait-for relations (which are defined

later) sent from the control nodes. If there is a directed cycle in the

demand graph, the system is in a deadlock, otherwise, the system is

not in a deadlock.

(B) Whenever a node receives a status report request from the central control

node, it performs the following operations:

(1) Broadcasts a message to all nodes in the cluster requesting them to

send their statu tables and waits until all tables have been received.

(2) Constructs a demand graph for the cluster using only local

transactions for which the resource status table agress with the

process status table.
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(3) Computes the transitive closure of the demand graph. If there is a

directed cycle in the demand graph, the system is in a deadlock.

(4) Dervies the wait-for relations from the transitive closure of the

demand graph. A process/resource is waiting for a process/resource

if and only if:

(a) The procesess and/or the resources are in some intercluster

transactions.

(b) The process/resource is waiting directly or indirectly for the

process/resource (i.e., here is a directed arc pointing from the

process/resource to the process/resource in the transitive

closure of the demand graph).

(5) Send the intercluster transaction status information and the wait-for

relations to the central control node.

The above concept can be extended into many levels. In this way, a

iiierarchy uf control nodes can be constructed. Due to the local access pattern of a

system, the amount of information that has to be sent from a child control node to

its parent can be greatly red'ced.
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CHAPTER 5

Software Reliability

5.1 Classification of Software Reliability Models

To analyze and further develop different reliability models, we first

classify them based primarily on the phase of software life-cycle during which the

model is applicable, namely, Testing and Debugging phase, Validation phase,

Operation and Maintenance phase. During the Testing and Debugging phase, the

implemented software is tested and debugged. It is often assumed that the

correction of errors does not introduce any new errors. Hence, the reliability of

the program increases and, therefore, the models used during this phase are also

called reliability growth models. These models are mainly used to obtain a

preliminary estimate of the software reliability. However, software developed for

critical applications, like airtraffic control, must be shown to have a high

reliability prior to actual use. At the Validation phase, the software is subjected to

a large amount of testing in order to estimate the reliability. Errors found during

this phase are not corrected. In fact, if errors are discovered the software may be

rejected. The Nelson model (TRW 76) is based on statistical princinles. The

software is tested with test cases having the same distribution as the actual

operating environment. After the software has been thoroughly validated it is put

into operation. During use further errors may be detected or there may be user

demands for new features. These presures result in maintenance activity (SWA 76,

SWA 79), i.e., modification of the software. The addition of new features results in

a growth in the size of the software. Muring the maintenance phase, the possible

activities are: error correction, addition of new features and improvements in

algorithms. Any of these activities canpeturb the reliability of the system. The

new reliability can be estimated using the models for the validation phase.

However, it may be possible to estimate the change in the reliability using fewer
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,.esting cases by ensuring that the original features have not been altered. We do

nut know of any existing software reliability models applicable during this phase.

Based on the above classifications, we develop a theory of software reliability

based on the nature of the input domain of the program, i.e., the size of the errors

od the number, complexity and continuity of equivalence classes formed in the

.nput domain.

5.2 Testing and Debugging Phase

The major assumption of all software reliability growth models is that

inputs are selected randomly and independently from the input domain according to

he operational distribution.

This is a very strong assumption and will not hold in general, especially so

in the case of process control software where successive inputs are correlted in

zime during system operation. To adjustify the above disadvantage, the models are

developed and can be applied to any type of software, their validity increases as

1he size of the software and the number of programmers involved increases:

(A) Randorn \alk .Model

We cat, view th crrot oize undi," okeiatonal input3, .;ay, , As z tandth

walk process in the interval (O,e). Each time the program is changed (due to error

correctins or other modifications) changes. Let Zj denote the time between

failures after the jth change. Zn is a random variable whose distribution depends

on j. We do not know anything about the random walk process of other than a

sample of time between failures. Hence, one approach is to construct a model for

-ind fit the parameters of the nmodel to the sample data. Then we asume that the

future behaviour of can be predicted fromthe behaviour of the model.

(7) Bayesian Model

An alternative approach is the bayesian approach advocated by Littlewood
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(LIT 79(B)). Here we postulate a prior distribution for each of 1, 2, .. j- Then

based on the sample data, we compute the postcrior distribution of j+1*

5.3 Validation Phase

The well known Nelson Method during this phase is based upon the policy

that the test cases are selected randomly according to the operational distribution.

However, it suffers from a number of practical drawbacks:

(1) In order to have a high confidence in the reliability estimate, a large

number of test cases must be used.

(2) It does not take into account "continuity" in the input domain. For

example, if the program is correct for a test cse, then it is likely that it is

correct for all test cases executing the same sequence of statements.

(3) It assumes random sampling of the input domain. Thus, it cannot take

advantage of testing strategies which have a higher probability of

detecting errors, e.g., boundary value testing, etc. Further, for most

real-time control systems, the successive inputs are correlated if the

inputs are sensor readings of physical quantities, like temperature, which

~e ,.rt hange rap- Iy. 1nithese cases we -annot perform rarlctond tresting.

(4) It does not consider any complexity measure of the program, e.g., number

of paths, statements, etc. Generally, a complex program should be tested

more than a simple program for the same confidence in the reliability

estimate.

The approach we developed reduces the number of test cases required by exploiting

the nature of the input domain of the program. The input domain based approach

to the estimation of software reliability is: R = I - Ver, where Ver is the estimated

remaining error size. Ver can be deterined by testing the program and locating and

estimating the size of errors found. In most cases this is simple since it is

relatively easy to find the inputs affected by a known error. It this cannot be done,
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random sampling can bo used to estimate the size of the error. It is expected that

oftware for critical applications will contain no known errors during this phase.

.eliability of the program given any input distribution by assuming some knowledge

bout the error distribution in the input domain. Furthermore, we can generalize

dhis by considering the input distribution as well as the membership function of

cach input element in probabilistic equivalence classes defined as fuzzy sets (ZAD

I, 9 )

5.5 Applications

(a) PROGRAMMING LANGUAGE DESIGN: The reliability of a program

,lepends greatly on the language on which it is coded. For example, many more

errors will be introduced in a program coded in a Machine Level Language (MLL)

,han in a program cded in a High Level Lan-uage(HLL). This is the bases of the

concept of language level introduced by -lalstead (HAL77). However, this criteria

rnly considers the difference between the volumes of the programs produced by

us,ng different languages. Here vie propose a different measure of the goodness of

a programming language. The criteria is qualitative and is based on the size of

r,'~ss:le errors w.iich a prnram'ner can commit. A good programming language

construct is one vhich maximizes the change of detecting an error when it occurs,

i.e., it increas:s the size of likely errors. %,'e consider all methods of validating the

software, including code reading, static analysis, dynamic analysis and testing.

(b) PROJECT MANAGEMENT: Another important application of software

reliability theor is in project management. One obvious use of the reliability

measure is as a criterion for the acceptance or rejection of the software. Besides,

sofvtware reliability can be applied to the scheduling of testing when several

different strategies can be used. The analysis is based on the concept of efficiency

cf testing strategies. We develop a probabilistic model which determines a test

case selection strategy in order to minimize some cost criterion. The cost could I)-
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the amount of time required to develop a test case using a particular strategy.

This is useful for control systems' software since the requirement of high

confidence in the reliability estimate implies a large amount of testing. The model

also specifies the optimal distribution of test cases over thevarious [nodules

constituting the program. For example, simple modules should be tested less than

complex error-prone module;.

- 34



'CHAPTLR 6

!5'uture Work

One future research area is to develop the criteria for grouping critical

eions and monitors into sets so to minimize the among of "unstructuredness"

rreated by the grouping. Another future research area is to develop faster

dleadlock detection procedures. Although it has been proven that determining the

.afety of a system is NP-complete, the computation complexity can be in

,:olynomial to the size of the program if some parameters are fixed.

One issue which we have not dealt with is thestimtion of the overall

;irdware/software system reliability. The combination of hardware and software

S..eliblity estimates is discussed in (BUN S0, KEE 76, KLI S0, TIIO SO). However,

tne approach generally advocated is to assume that hardware and software failures

ere indepcixent, so that the overall system reliability is the product of the

,oftware arid hardware reliability estimates. This is unsatisfactory since it is

possibie for the software to rectify hardware failures and vice versa. For (xample,

tie failure of a line printer need not be a system failure if the software can

re-dirc- L the output to another device. A viable approach is to view the overall

"'.stcm ,s b:.*.g si .i"lar t- a r-.i ..i u .Lhi ; . (

For complex systems, methods must bc dcveloped for estimating the

d.>i~n correctness of the hardware. Thus, failures can be due to software errors,

iitrd'viare component break-downs or hardware design errors. The applicability of

;oftware reliability growth models discussed above to estimating the design

zorrectness needs to be investigated.

Another important research area is developing techniques for validating

.oftware reliability models. At present the models are applied to some project

'Iata and their validity is deduced from the results. This is not satisfactory since

very few sets of actual data are available. Further, the rnodels make some

- 35-

L- gli,-- -- -I.-



assumriptions which may not hold for the particular project. For example, most

software reliability growth models assurne that the testing process is the same as

the operational environment, which is not true in general. In this thesis we have

adopted a deductive approach coupled with several experiments. Also, we have

derived auxiliary results (e.g., the optimal set of test cases) which seem

reasonable. Further, we have developed an independent way of validating each

model, namely, the determination of the error size for the stochastic model and

the error seeding approach to estimating the correctness probability for the

theoretical model we developed.
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